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Suzuki reaction on pyridinium N-(5-bromoheteroar-2-yl)aminides
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Abstract—The reactivity of substituted pyridinium N-(2 0-azinyl)aminides in Suzuki–Miyaura cross-coupling reaction is reported.
The reaction proceeds in good yield employing Cs2CO3 as base, and producing substitution on the negatively charged moiety.
� 2004 Published by Elsevier Ltd.
The palladium-catalyzed cross-coupling has become one
of the most widely used methods for the formation of
sp2–sp2 carbon–carbon bonds.1 As compared with other
related procedures, Suzuki reaction has emerged as a
powerful tool for the cross-coupling of aryl bromides,
iodides and triflates with arylboronic acids.2 Functional
group compatibility, good yields and low toxicity of
both reagents and intermediates have been reasons for
the widespread use of the Suzuki reaction either on small
or large scale. The process has provided an efficient
pathway towards the synthesis of new heterobiaryls3

and in the search for biologically active compounds.4

For several years, we dedicated part of our research pro-
gramme to the heteroaryl-stabilized cycloiminium ylides
1, as building blocks for the synthesis of heterocyclic
derivatives5 and, more recently, to the synthetic utility
of pyridinium N-(2 0-azinyl)aminides 2 (Fig. 1).6 Due to
their peculiar structure, these compounds show a clearly
defined reactivity. The negatively charged 2-aminoazine
fragment reacts efficiently with electrophiles such
halogens, quinones and diazonium salts under mild
conditions.6b–e In addition, the regioselectiveN-exoalkyl-
ation of heteroaryl-stabilized aminides, followed by the
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Figure 1.
reduction of the N–N bond allowed us to prepare
2-alkylaminoazines,6f and N-(2-pyridyl) substituted
polyamines.6g

The palladium-catalyzed cross-coupling processes have
received little attention in charged heteroaromatic spe-
cies and, to our knowledge, only a few examples have
been reported.7,8 For that reason, we considered testing
the Suzuki reaction on a series of pyridinium haloazin-2-
ylaminides.6c,9 Keeping in mind that the use of chloro
derivatives and �electron-rich� systems (as the azine ring
of our aminides 2) may hinder the coupling process, our
initial efforts have focused on the reaction of the more
reactive bromo derivatives 36c (Scheme 1) with several
boronic acids.

As there is a large number of variables to be considered
in a Suzuki reaction, like palladium source, ligand, addi-
tive, solvent, temperature, etc.; a standard methodology
was initially tested (PhB(OH)2 1.1equiv; Pd(PPh3)4 2%;
K2CO3 1.25equiv; toluene–ethanol 20:1; reflux one day).
The first experiment performed over 3a showed evidence
of reaction, producing 4a in a 50% yield. The use of a
stronger base such as KtBuO produced a lower yield
(25%), while Cs2CO3 gave the best result (86%). On
optimizing the method, we established that coupling
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Table 2. Double coupling of aminide 5 and boronic acidsa

Entry R Reaction

time (h)

Product Yield

(%)

1 8 6a 63

2
CH3

8 6b 56

3 3 6c 85

4
O

CH3
3 6d 90

a Reaction conditions: aminide (1equiv), boronic acid (3equiv),

Pd(PPh3)4 (5%) and Cs2CO3 (4equiv), reflux temperature of a mix-

ture toluene–ethanol (20:1, v/v).
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between 3a and phenylboronic acid takes place effi-
ciently in the presence of 5% Pd(PPh3)4 with 2equiv of
Cs2CO3 (Table 1, entry 1).10 Using this method, a wide
set of Suzuki reactions proceeded, as shown in Table 1,
in good yield using the aminide 3a.

A similar behaviour was observed using the same reac-
tion conditions with pyridinium N-(bromopyrazin-2 0-
yl)aminide 3b6c and several arylboronic acids (entries
9–11, Table 1). Substitution of the diazine ring, which
is more electron deficient than pyridine, required longer
reaction times, giving compounds 4i–k in moderate
yields.

These results encouraged us to try other ylides, as the
dibromoaminide 5,6d which undergoes a double Suzuki
process (Scheme 2), yielding diarylated ylides 6.

The same methodology used to prepare compounds 4
was adapted to the double coupling with 5.11 Using
3equiv of boronic acid and 4equiv of Cs2CO3, a series
of diarylated aminides 6 (Table 2) was successfully
obtained.

In conclusion, the Suzuki–Miyaura cross-coupling reac-
tion between pyridinium N-haloheteroarylaminides and
boronic acids works employing standard conditions and
Cs2CO3 as base. The process results in a selective substi-
Table 1. Coupling of aminides 3a,b and boronic acidsa

Entry R Z Reaction

time (h)

Product Yield

(%)

1 CH 8 4a 90

2
CH3

CH 8 4b 88

3 CH 8 4c 70

4
O

CH3
CH 8 4d 91

5 CH3

O

CH 8 4e 75

6
N

CH 2 4f 95

7
OHC

CH 72 4g 64

8
Cl

CH 24 4h 85

9 N 15 4i 67

10 CH3

O

N 24 4j 45

11 N N 2 4k 71

a Reaction conditions: aminide (1equiv), boronic acid (1.5equiv),

Pd(PPh3)4 (5%) and Cs2CO3 (2equiv) at reflux temperature of a

mixture of toluene–ethanol (20:1, v/v).
tution of the negatively charged moiety in good yields,
and provides a useful complementary strategy to the
use of pyridinium N-azinylaminides as intermediates
to prepare functionalized 2-aminoazines. These are
important synthons in medicinal and heterocyclic chem-
istry. Efforts to widen the scope of the process on other
N-aminides are in progress in our laboratory.
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5%mmol), the corresponding boronic acid (1.5mmol), the
corresponding aminide 3 (1mmol) were dissolved in a
toluene–ethanol mixture (20:1, 15mL). Then, Cs2CO3

(2mmol) was added, and the mixture was stirred under
argon and refluxed for the reaction time indicated in Table
1. The course of the reaction was followed by TLC, HPLC
and/or 1H NMR. Once the starting material had been
consumed, the catalyst was filtered off through Celite and
washed with acetonitrile until no colour was observed in
the filtrate. The filtrates were combined and evaporated to
dryness. The crude product was purified by flash chroma-
tography on a silica gel column with ethanol as the mobile
phase, and recrystallized from a suitable solvent. Com-
pound 4f was isolated as a yellow oil, while compounds 4a
and 4h were transformed into the corresponding hydro-
bromides before purification.
N-(5 0-Phenylpyridin-2 0-yl)pyridinium aminide (4a): orange
solid (299mg, 90%), IR (KBr) mmax (cm�1): 1594, 1466,
1378, 119, 768cm�1; 1H NMR (300MHz, CD3OD): d
(ppm) 8.81 (2H, dd, J = 7.0 and 1.2Hz); 8.05 (1H, tt,
J = 7.7 and 1.2Hz); 7.99 (1H, dd, J = 2.6 and 0.8Hz); 7.84
(2H, dd, J = 7.7 and 7.0Hz); 7.72 (1H, dd, J = 8.9 and
2.6Hz); 7.52 (2H, dd, J = 8.3 and 1.3Hz); 7.40 (2H, dd,
J = 8.3 and 7.3Hz); 7.26 (1H, tt, J = 7.3 and 1.3Hz); 6.63
(1H, dd, J = 8.9 and 0.8Hz); 13C NMR (75MHz CD3OD):
d (ppm) 164.9, 144.9, 144.5, 140.0, 137.7, 137.0, 129.9,
128.5, 127.3, 126.4, 125.5, 112.3; MS (EI, m/z) 247 (44,
M+1), 246 (100, M), 140 (48), 114 (25). Hydrobromide:
Beige solid, mp 234–235 �C (EtOH–AcOEt). Anal. Calcd
for C16H14BrN3Æ1/4H2O: C, 57.76; H, 4.39; N, 12.63.
Found: C, 58.03; H, 4.37; N, 12.75.

11. General procedure for double coupling: the aminide 5
(1mmol) and the corresponding boronic acid (3mmol)
were dissolved in a toluene–ethanol mixture (20:1, 15mL).
Then, Cs2CO3 (4mmol) was added, followed by Pd(PPh3)4
(57mg, 5%mmol). After the addition, the mixture was
kept under argon with vigorous stirring for 5min, and
then refluxed until no starting material was detected. At
the end, the mixture was filtered through Celite, and the
residue washed with acetonitrile until no colour was
observed in the filtrate. The filtrates were combined and
evaporated to dryness, and the residue purified by flash
chromatography through a silica gel column, using
ethanol as the mobile phase. Compound 6b was isolated
as a yellow oil, compound 6d was recrystallized from
ethanol and compounds 6a and 6c were transformed into
the corresponding hydrobromides, and then recrystallized
from a suitable solvent.
N-(3 0,5 0-Diphenylpyridin-2 0-yl)pyridinium aminide (6a):
yellow solid (204mg, 63%), IR (KBr) mmax (cm�1): 1592,
1420, 1385, 1311, 1144, 698cm�1; 1H NMR (300MHz,
CD3OD): d (ppm) 8.63 (2H, dd, J = 7.1 and 1.3Hz); 7.98
(1H, d, J = 2.6Hz); 7.97 (1H, tt, J = 7.7 and 1.3Hz); 7.72
(4H, m); 7.60 (1H, d, J = 2.6Hz); 7.49 (2H, dd, J = 7.4 and
1.3Hz); 7.42 (2H, ap. t, J = 7.4Hz); 7.36 (2H, ap. t,
J = 7.4Hz); 7.32 (1H, tt, J = 7.4 and 1.3Hz); 7.23 (1H, tt,
J = 7.4 and 1.3Hz); 13C NMR (75MHz CD3OD): d (ppm)
161.6, 145.3, 144.2, 140.4, 139.6, 138.4, 137.6, 130.4, 130.0,
129.7, 128.3, 128.1, 127.4, 126.5, 126.4, 124.9; MS (CI,
m/z) 324 (100, M+1), 323 (47), 247 (39), 245 (46), 80 (48).
Hydrobromide: Beige solid, mp 155–156�C (EtOH–Et2O).
Anal. Calcd for C22H17N3Æ2HBrÆ1H2O: C, 52.51; H, 4.21;
N, 8.35. Found: C, 52.36; H, 4.17; N, 8.39.
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